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Critical Light Scattering in Pure Liquids'

G. Flossmann? and R. Folk?*?3

Light-scattering experiments near the critical point (7, p.) in fluid systems and,
in particular, the central Rayleigh peak in the frequency spectrum are reviewed.
Within a nonasymptotic renormalization-group theory, the crossover function is
calculated between several regions: (i) from the background to the asymptotic
region, (ii) from the hydrodynamic region (wave length >> correlation length) to
the critical region (wave length << correlation length), and (iii) from critical
densities to noncritical densities. Contrary to the mode-coupling expression, the
appropriate scaling function is well defined in all limits of its arguments. At 7,
the crossover in the wave-vector dependence of the linewidth is also considered.
Theoretical results are compared with experiments for pure liquids. Nonuniversal
parameters are chosen consistent with the transport coefficients (i.e., the shear
viscosity) for the same substance which can be evaluated within the same formalism.

KEY WORDS: characteristic frequency; critical point; dynamic critical
phenomena; light scattering; renormalization-group theory; transport coef-
ficients.

1. INTRODUCTION

Light scattering is a common technique to investigate the transport proper-
ties of a fluid system. Especially the characteristic frequency w,, defined as
the half width at half height of the central Rayleigh peak in the frequency
spectrum, provides useful information about the dynamical properties of
the system.

Far away from the critical point in the background region, charac-
terized by small values of the correlation length & or large values of the
wave vector k, the behavior of the characteristic frequency is described by
the van Hove theory. In the hydrodynamic region for small values of k¢,
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the characteristic frequency is given by w.=D (T, p) k* with D (T, p)
being the regular thermal diffusivity (the ratio of the nonsingular thermal
conductivity and the specific heat at constant pressure), whereas in the
“background” critical region, for large values of k¢, the characteristic
frequency is proportional to k*.

In the vicinity of the critical point, characterized by large values of ¢
or small values of k, fluctuations determine the form of the characteristic
frequency. In the critical limit for large values of k&, the power-law
behavior w, ~ k* with the dynamical critical exponent z ~ 3 is expected. In
the hydrodynamic limit for k¢ — 0, the characteristic frequency is again
given by w.= D (T, p) k? but now with a singular Onsager coefficient and
thus a diverging thermal conductivity.

Within the nonasymptotic renormalization-group theory we are able
to describe the crossover from the asymptotic region to the background
region as well as from the hydrodynamic region to the region of large wave
vectors quantitatively and compare our theory to experiments in pure liquids.

2. CHARACTERISTIC FREQUENCY

The characteristic frequency w, can be found from the dynamic order
parameter correlation function within the dynamic model H, which was
briefly reviewed in Ref. 1. The dynamic correlation function is, in general,
given by

_ X st( ka é)

Xdyn(éaktw)_w(k é)F(X, y) (1)

with x =k¢ and y = w/w,. Scaling theory [2] predicts a non-Lorentzian
form of the shape function F(x, y) in the asymptotic region close to the
critical point. The non-Lorentzian shape has been calculated by mode-
coupling theory [3] and the results were confirmed by experiments in
liquid mixtures [4]. Within renormalization theory no such calculation is
available and one-loop theory predicts a Lorentzian shape [5]. This
problem is not settled so far, and so the characteristic frequency found
from the dynamic order parameter vertex function is based on the
Lorentzian approximation.

In one-loop perturbation theory the renormalized characteristic fre-
quency @,, expressed in terms of the renormalized model parameters I'(/)
and f(/), is found to be of the form,

A0
16

ok, é)zF(/)k2(§_2+k2){l [—5+6x_21n(1+x2)]} (2)
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The temperature dependence enters via the flow equations for the mode
coupling f,(/) and the Onsager coefficient I'(¢), which are given by Egs. (7)
and (8) of Ref. 1. Other than for the evaluation of the frequency-dependent
shear viscosity, the connection between the flow parameter / and the
correlation length or the wave vector, respectively, is found from the
matching condition (which arises naturally within the calculation of the
vertex function),

(Eo ') =72+ k2 (3)

where &, is the amplitude in the power law for the correlation length
E=¢&,t7". As described in Ref. 1 the correlation length may also be
expressed in terms of the reduced density using the cubic model.

In order to discuss the various limits of the characteristic frequency, it
is useful to rewrite Eq. (2): Extracting the critical asymptotics the charac-
teristic frequency reads

wlk, x) = Losk* <1 +2xz>1_w2 [enalk, X) 17 f(K, x) (4)

X

with x =k¢ and z=4 —x,. The critical exponent of the thermal conduc-
tivity x, is related to the exponent of the shear viscosity x, by x,+x,=1
in one-loop order. The function f(k, x) defined as (f*? is the fixed-point
value of the mode coupling)

%2

f(k,x)zl—m[—&i—@c*zln(l—|—x2)] (5)

The nonasymptotic contributions are collected in

ol x) = { sy +fz} (6)
ko X

so that the asymptotic region is characterized by c,,(k, x) =1 and, thus,
the frequency can indeed be written in scaling form with the scaling func-
tion f depending only on the variable x =k¢. And finally the asymptotic
Onsager coefficient I',; and the crossover wave length k, are given by

(S (1P N\
renf(ge). w057 7

containing the nonuniversal initial values I, and f, at ¢, corresponding to
a temperature #,.
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3. CROSSOVER BEHAVIOR

We start this section with a discussion of the various limits of the
characteristic frequency: In the Aydrodynamic limit x = k& — 0, we find

1] x2 177!
lim w/(k, é)zl"askzé“"{l+} {1— : [l—i—} } (8)
x—0 Xo 16 Xo

with x, = ko&. Here the coefficient of k? is the nonasymptotic expression for
the temperature dependent thermal diffusion coefficient D (&) discussed in
Ref. 6 so that we can rewrite Eq. (8) in the well-known form w, = D ;(¢) k?
for the hydrodynamic region. In the opposite critical limit x — oo we have

. . k| 5f %2 k1!
Xh_)rriO wk, &) =w (k)= Tk [1 +k0} {1 + T { 1 +k0} } 9)
which is the wave-vector dependent nonasymptotic expression of the
characteristic frequency. Both nonasymptotic expressions allow considera-
tion of the crossover from the asymptotic limit ¢k, — oo or k/ky— 0 to the
background limit ¢k, — 0 or k/ky,— oo, respectively. In the hydrodynamic
case we obtain the limits

*2
lim C()c(k, é) =1—vask25—2+xi <1 _t> (10)
Eky — o0 16
f2 X
lim wc(k,f)=FOk2£‘2<l—.*°2> (11)
Cky—0 t

where we used the expression for k, given in Eq. (7) for the last limit. In
the background limit our expression reaches the van Hove behavior
w, oc k*¢ 2 In the critical region we obtain

5f %2
lim wJk)=T,k* <l + 21 > (12)
k/ko— 0 16
2\ x;
kﬂlim w(k)= F0k4<1 — f:2> (13)
0> © t

where again we reach the van Hove theory for large values of the ratio
k/ky. This means that our results for the characteristic frequency describe
the crossover in the correlation length (from ¢=2** to ¢~2) in the
hydrodynamic region characterized by the limit x — 0 as well as the cross-
over in the wave vector (from k? to k%) in the critical region characterized
by the limit x — oo. This is shown in Fig. 1 where we have plotted the
dimensionless characteristic frequency w,/I ok as functions of the wave
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Fig. 1. Dimensionless characteristic frequency w,/I k> as a
function of the wave vector (top) and the inverse correlation
length (bottom). We can see the crossover from the asymptotics
to the van Hove background.

vector and the correlation length along the critical isochore. In Fig. 2 we
have plotted w./I'yk?* as a function of the reduced temperature for various
values of the reduced density and the wave vector using the cubic model
described in Ref. 1 (the density enters via the correlation length in the
matching condition). Only at zero wave vector and along the critical
isochore (that means for 4p =0), we can see the asymptotic power-law
behavior w ~ &2+~ t"2~*) and the crossover to the van Hove theory
with @, ~ t*, whereas for noncritical densities or nonvanishing wave
vector, the dimensionless characteristic frequency approaches a finite value
for t — 0.
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Fig. 2. Dimensionless characteristic frequency w./I'yk? as a
function of the reduced temperature 7 at constant wave vector
(top: k=10°cm~!; bottom k=0cm ') and various values of
the reduced density 4p.

We have seen that with our nonasymptotic theory we always reach the
van Hove behavior in the nonasymptotic limit for large values of the wave
vector or small values of the correlation length, respectively. This is shown
very well in Ref. 7 where we have plotted the ratio of the full characteristic
frequency to its van Hove expression. This behavior is different from the
nonasymptotic mode coupling expression of Olchowy [8] (a recent
improvement of this theory is found in Ref. 9) which does not yield the van
Hove theory in the nonasymptotic region but instead becomes negative for
large values of the variable x [ 7]. This region of unphysical negative values
of the characteristic frequency is always reached at constant correlation
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length when the wave vector becomes larger than the nonuniversal param-
eter ¢p. On the other hand the parameter ¢, cannot be set to infinity as
this limit yields an unphysical divergence in the hydrodynamic limit for

E-0[9]

4. COMPARISON WITH EXPERIMENTS

In Ref. 7 we have compared our asymptotic theory to the theoretical
results of Kawasaki and Lo, of Paladin and Peliti, and of Burstyn et al.
[10] so that we shall compare our theory only to various experiments in
this paper. We start this comparison with the experimental xenon data of
Swinney and Henry [11].

In Fig. 3 we compare our asymptotic (for ¢,, =1) and nonasymptotic
(for ¢,,#1) theory for the characteristic frequency w./k®> with the
experimental xenon data (all nonuniversal parameters are indicated in the
figure). As discussed in Refs. 6 and 7 we can treat the exponent x;=1—x,
as an additional free parameter in the expression for the Onsager coefficient
(see Ref. 1) so that we can fit the initial value of the mode coupling f, and
the exponent x, from the experimental data for the characteristic frequency
and, e.g., the shear viscosity (the initial value of the Onsager coefficient I,
is determined by the value of the shear viscosity at ¢,). Following the fitting
procedure described in Ref. 1 we get the parameter f, from the charac-
teristic frequency data and the exponent x, from the microgravity shear
viscosity data of Berg et al. [12]. In doing so we find good agreement for
the characteristic frequency (Fig. 3) as well as for the frequency dependent
shear viscosity [1].

As we can see in Fig. 3 the experimental data are not described
correctly by our asymptotic expressions but only by the nonasymptotic
expressions which show the crossover to the van Hove theory for large
values of the reduced temperature 7. Analogously any asymptotic theory
[10] fails to describe the experimental data correctly. In Ref. 11 this
problem was eliminated adding a regular background contribution of the
form w?=(1%/pc,) k*(1+x?) to the critical expression for the charac-
teristic frequency with A® being the regular part of the thermal conductivity
and c, the full specific heat at constant pressure containing also critical
contributions. The use of the full specific heat together with the term 1 + x>
ensures the crossover to the van Hove theory for large values of the
reduced temperature as well as for large values of the wave vector (the
background characteristic frequency is proportional to k%¢ =2 for x — 0 and
to k* for x> o0) so that the full characteristic frequency w,=wS +w?
obtained by this procedure yields basically the same curves as our non-
asymptotic theory (see Fig. 6 of Ref. 11). As discussed in Ref. 7 we have to
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Fig. 3. Comparison of the asymptotic (dashed lines) and non-
asymptotic (full lines) expressions for w./k> with the Xe data of
Ref. 11; from Ref. 7.

use a background characteristic frequency of the form w®= D.(T, p) k* —
D%(T., p.) k? with the background thermal diffusivity given by D% =
A%/pcy} and the background specific heat ¢} containing only the regular
temperature dependence without the critical singularity, in our theory. As
this background term turns out to be negligibly small in the temperature
range shown in Fig. 3, we have neglected it so that our asymptotic and
nonasymptotic curves for Xe contain only the critical contributions dis-
cussed in this paper. So the main difference between our nonasymptotic
theory and the results of Ref. 10 is that the crossover to the van Hove
theory, which is clearly seen in experiments, is already contained in our
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Fig. 4. Mode coupling f%(#,w) (all nonuniversal parameters for
xenon) as a function of the reduced temperature ¢ and the dimen-
sionless wave vector k&, along the critical isochore. For small values of
the wave vector and the reduced temperature we reach the fixed point
value f**=24/19. The dark region marks the range of experimental
data for the characteristic frequency in xenon.

expressions for the characteristic frequency and not added by an appropriate
form of the background contribution!

The crossover from the asymptotic to the background behavior can be
seen most easily looking at the relevant values of the mode coupling which
are shown in Fig. 4. Here we have plotted the mode coupling as a function
of temperature and wave vector. The experimental region (dark area) for
the xenon data covers the slope of the crossover from asymptotics to back-
ground.

5. CONCLUSION

We were able to show that our one-loop perturbation theory result for
the characteristic frequency evaluated within the field theoretical method of
the renormalization group theory does not only reproduce the correct wave
vector and correlation length dependence in the hydrodynamic region as
well as in the critical region but is also able to describe experimental data
sufficiently well for a large range of wave vectors and reduced temperatures.
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There are, however, some points which indicate the need for a two-
loop analysis of the model. First, we have seen that in one-loop order the
dynamic correlation function is always of Lorentzian form whereas scaling
theory [2] predicts deviations for large frequencies. Second, the com-
parison of the frequency dependence of the shear viscosity with experimen-
tal data [ 1] also requires the calculation of the vertex function up to two-
loop order.
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